Millimeter wave treatment promotes chondrocyte proliferation via G1/S cell cycle transition.

نویسندگان

  • Xihai Li
  • Hongzhi Ye
  • Fangrong Yu
  • Liangliang Cai
  • Huiting Li
  • Jiashou Chen
  • Mingxia Wu
  • Wenlie Chen
  • Ruhui Lin
  • Zuanfang Li
  • Chunsong Zheng
  • Huifeng Xu
  • Guangwen Wu
  • Xianxiang Liu
چکیده

Millimeter waves, high-frequency electromagnetic waves, can effectively alleviate the clinical symptoms in osteoarthritis patients, as a non-pharmaceutical and non-invasive physical therapy regimen. However, the molecular mechanisms of the therapeutic effects of millimeter wave treatment are not well understood. In the present study, the effect of millimeter waves on the G1/S cell cycle progression in chondrocytes and the underlying mechanism was investigated. Chondrocytes isolated from the knee of SD rats were cultured and identified using toluidine blue staining. The second generation chondrocytes were collected and stimulated with or without millimeter waves for 48 h. Chondrocyte viability was analyzed using the MTT assay. The cell cycle distribution of chondrocytes was analyzed by flow cytometry. mRNA and protein expression levels of cyclin D1, cyclin-dependent kinases 4 and 6 (CDK4 and CDK6) and p21 were detected using real-time PCR and western blotting, respectively. Millimeter wave stimulation was found to significantly enhance chondrocyte viability. Moreover, the percentage of chondrocytes in the G0/G1 phase was significantly decreased, whereas that in the S phase was significantly increased. In addition, following millimeter wave treatment, cyclin D1, CDK4 and CDK6 expression was significantly upregulated, whereas p21 expression was significantly downregulated. The results indicate that millimeter wave treatment promotes chondrocyte proliferation via cell cycle progression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Millimeter wave treatment promotes chondrocyte proliferation by upregulating the expression of cyclin-dependent kinase 2 and cyclin A.

We investigated the effects of millimeter wave treatment on the expression of the cell cycle regulating proteins cyclin-dependent kinase 2 (CDK2) and cyclin A in chondrocytes. Knee articular cartilage from SD rats was used to establish cultured primary chondrocytes. After identification using toluidine blue staining, passage 2 chondrocytes were randomly divided into different groups and treated...

متن کامل

Achyranthes bidentata polysaccharides induce chondrocyte proliferation via the promotion of the G1/S cell cycle transition.

Achyranthes bidentata polysaccharides (ABPS) are the major bioactive constituents of Radix Achyranthes bidentata (AB), which has been widely used in traditional Chinese medicine for the treatment of osteoarthritis. However, the molecular mechanisms behind the therapeutic effect of ABPS remain unclear. In the present study, chondrocytes were isolat...

متن کامل

Electroacupuncture promotes chondrocyte proliferation via accelerated G1/S transition in the cell cycle.

The aim of the present study was to investigate the effects of electroacupuncture (EA) on the proliferation of chondrocytes and the molecular mechanism(s) involved. Passage 2 chondrocytes were randomly divided into four groups and treated with EA or nocodazole. After treatment, cell proliferation was determined using an MTT assay and DNA staining followed by FACS. The mRNA expression levels of ...

متن کامل

Cibotium barometz polysaccharides stimulate chondrocyte proliferation in vitro by promoting G1/S cell cycle transition

Cibotium barometz polysaccharides (CBPS) are one of the most important bioactive components extracted from the Cibotium barometz plant, which belongs to the Dicksoniaceae family. It has been widely used for the treatment of orthopedic diseases in traditional Chinese medicine. However, the molecular mechanisms behind the therapeutic effects of CBPS remain to be clarified. In the present study, t...

متن کامل

Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest

Cell cycle regulation is critical for chondrocyte differentiation and hypertrophy. Recently we identified the Notch signaling pathway as an important regulator of chondrocyte proliferation and differentiation during mouse cartilage development. To investigate the underlying mechanisms, we assessed the role for Notch signaling regulation of the cell cycle during chondrocyte differentiation. Real...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 29 5  شماره 

صفحات  -

تاریخ انتشار 2012